
by

Jim Lewis

SynthWorks VHDL Training

Jim@SynthWorks.com

SynthWorks

VHDL-2008,
The End of Verbosity!

2

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

VHDL-2008, The End of Verbosity!
SynthWorks

Copyright © 2013 by SynthWorks Design Inc.
Reproduction of this entire document in whole for individual usage is permitted.
All other rights reserved.

In particular,without express written permission of SynthWorks Design Inc,
You may not alter, transform, or build upon this work,
You may not use any material from this guide in a group presentation,
tutorial, training, or classroom
You must include this page in any printed copy of this document.

This material is derived from SynthWorks' VHDL classes

This material is updated from time to time and the latest copy of this is available at
http://www.SynthWorks.com/papers

Contact Information
Jim Lewis, President
SynthWorks Design Inc
11898 SW 128th Avenue
Tigard, Oregon 97223
503-590-4787
jim@SynthWorks.com

www.SynthWorks.com

3

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

VHDL-2008, The End of Verbosity!

Many think of VHDL as the Verbose HDL.
With VHDL-2008 this is no longer the case.

Topics
Simplified Sensitivity List
Simplified Condition (if, while, …)
Matching Relational Operators
Simplified Case Statement
Sequential Conditional Assignment
Unary Reduction Logic Operators
Array / Bit Logic Operators
Array / Bit Addition Operators
Simplified Printing with to_string
Expressions In Port Maps
Reading Out Ports
Enhanced Bit String Literals
Mod for Physical Types (Time)
Context Declarations
Slices in Array Aggregates

SynthWorks

4

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Simplified Sensitivity List - Process (all)

Prior to 2008, all inputs to a combinational logic process need
to be on the sensitivity list

Mux1_proc : process(MuxSel, A, B, C, D)
begin
. . .

Mux2_proc : process(all)
begin

VHDL-2008 allows the use of keyword "all" in place of signals

SynthWorks

5

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Simplified Condition (if, while, …)

if Cs1 = '1' and nCs2 = '0' and Cs3 = '1' then

Prior to 2008, a condition (expression in if, while, …) was
required to have a boolean result.

Our code was plagued with "="

if Cs1 and not nCs2 and Cs3 then

VHDL-2008 allows condition to have a bit or std_logic result

SynthWorks

6

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Matching Relational Operators

Prior to 2008, decoding arrays required conditionals
DevSel <= '1' when

 Addr = X"A5" and Cs1 = '1' and nCs2 = '0'

 else '0' ;

2008 adds relational operators: ?=, ?/=, ?>, ?>=, ?<, ?<=
return element values (bit, std_ulogic, …)

DevSel <= Addr ?= X"A5" and Cs1 and not nCs2 ;

Simplifies decoders

Harmonizes with Simplified Condition
if (Addr ?= X"A5" and Cs1 and not nCs2) then

SynthWorks

7

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Matching Relational Operators

DevSel <= '1' when

 Addr(7 downto 5) = "111" and

 Addr(2 downto 0) = "000"

 and Cs1 = '1' and nCs2 = '0'

 else '0' ;

Prior to 2008, there was no relational that understood '-'
As a result, '-' had to be factored out of an expression

DevSel <= Addr ?= "111--000" and Cs1 and not nCs2 ;

VHDL-2008, ?= and ?/= understand '-' as don't care
Defined for std_ulogic and 1 d arrays of std_ulogic

SynthWorks

8

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Simplified Case Statement

Y := A xor B ;
case Y is

Prior to 2008, expressions required intermediate objects

case A xor B is

With VHDL-2008, expressions are permitted

With VHDL-2008, locally static expressions now include
Operations on arrays (such as std_logic_vector)
Operators defined in std_logic_1164, numeric_std

constant CHOICE1 : std_logic_vector := "11" & "00" ;
. . .
case A xor B is
 when CHOICE1 => ...
 when "00" & "11" => ...

SynthWorks

9

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Sequential Conditional Assignment

if (FP = '1') then
 NextState <= FLASH ;
else
 NextState <= IDLE ;
end if ;

Prior to 2008, a conditional in a process required "if"

NextState <= FLASH when FP else IDLE ;

Conditional signal assignment in sequential code:

NextState := FLASH when FP else IDLE ;

Conditional variable assignment in sequential code:

VHDL-2008 simplifies code by allowing:

SynthWorks

10

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Unary Reduction Logic Operators

Prior to 2008, Calculating Parity required:
Parity <= Data(7) xor Data(6) xor Data(5) xor Data(4) xor
 Data(3) xor Data(2) xor Data(1) xor Data(0) ;

Simplifies Parity Calculation
signal Data : std_logic_vector(7 downto 0) ;
signal Parity : std_logic ;
. . .

Parity <= xor Data ;

Defined for arrays of bit and std_ulogic
Defined for all binary logic operators:

AND, OR, XOR, NAND, NOR, XNOR

function "xor" (anonymous: BIT_VECTOR) return BIT;

VHDL-2008 adds Unary Reduction Operators of the form:

SynthWorks

11

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Array / Bit Logic Operators

A(0)

A(1)

A(3)
Sel

Y(0)

Y(1)

Y(3)

..

.

signal Sel : std_logic ;
signal Y, A, vSel : unsigned(3 downto 0);
. . .

Y <= A when Sel = '1' else "0000" ;

Prior to 2008, and'ing a bit with an array

Y <= A and Sel ;

Simplifies to:

function "and"(L: BIT_VECTOR; R: BIT) return BIT_VECTOR;
function "and"(L: BIT; R: BIT_VECTOR) return BIT_VECTOR;

Defined for arrays of bit and std_ulogic

VHDL-2008 adds Array / Bit Logic Operators

SynthWorks

vSel <= (others => Sel) ;
Y <= A and vSel ;

12

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Array / Bit Logic Operators

VHDL-2008, simplifies data read back logic
DO <= (AReg and ASel) or (BReg and BSel) or
 (CSel and CReg) or (DSel and DReg) ;

Prior to 2008, data read back logic:
process (A, ASel, B, BSel, C, CSel, D, DSel)
begin
 if ASel = '1' then
 DO <= A ;
 elsif BSel = '1' then
 DO <= B ;
 elsif CSel = '1' then
 DO <= C ;
 elsif DSel = '1' then
 DO <= D ;
 . . .

SynthWorks

13

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Array / Bit Addition Operators

signal CarryIn : std_logic ;
signal A, B : unsigned(7 downto 0) ;
signal Y : unsigned(8 downto 0) ;
. . .

Y <= ('0' & A) + ('0' & B) + ("0" & CarryIn) ;

Prior to 2008, addition only for arrays
May result in two separate adders

Y <= ('0' & A) + ('0' & B) + CarryIn ;

Simplify coding Carry In

"+" and "-" defined for all array based math types

function "+"(L: unsigned; R: std_ulogic) return unsigned;
function "+"(L: std_ulogic; R: unsigned) return unsigned;

2008 adds Array / Bit Addition Operators

SynthWorks

14

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Simplified Printing with TO_String

function to_string (VALUE : unsigned) return string;

VHDL-2008 adds string conversions for all types

write(OUTPUT , "%%%ERROR data value miscompare." &

 LF & " Actual value = " & to_hstring (Data) &

 LF & " Expected value = " & to_hstring (ExpData) &

 LF & " at time: " & to_string (now) & LF) ;

Simplifies usage of report statement or built-in write

Hex and Octal string conversions for bit based arrays
to_hstring, to_ostring

SynthWorks

Prior to 2008, string conversion was handled with 'image
Only supported scalars. No overloading.

15

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Expressions in Port Maps

Temp <= Y and C ;

U_CHIP : CHIP port map (A, Temp, B) ;

Prior to 2008, expressions on inputs require separate signals:

VHDL-2008 allows expressions on inputs.
Executes same as a separate signal.

U_CHIP : CHIP port map (A, Y and C, B) ;

SynthWorks

16

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Reading Out Ports

i_Y <= A and B ;
Y <= i_Y ; -- out port

W <= i_Y and C ;

Prior to 2008, reading out ports required an extra signal:

Viewed as an output after a chip IO cell
Provided minimal benefit at top level of design

VHDL-2008 allows reading of Out Ports.
Y <= A and B ; -- out port

W <= Y and C ;

Value read will be locally driven value

SynthWorks

17

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Enhanced Bit String Literals

Addr(6 downto 0) <= "111" & X"F" ;

Prior to 2008, hex bit string literals were a multiple of 4 bits

7X"7F" = "1111111"

VHDL-2008, simplifies bit string literals by adding

Lengths

Unsigned notation (default)
Extend: 0 fill LHS
Reduce: ok to drop 0 on LHS

Signed notation
Extend: replicate sign bit
Reduce: ok to drop sign bit

-, X, Z handling (*S)

Decimal values

7UX"F" = "0001111" -- extend
7UX"0F" = "0001111" -- reduce
7UX"8F" = "0001111" -- error

7SX"F" = "1111111" -- extend
7SX"CF" = "1001111" -- reduce
7SX"8F" = "0001111" -- error

7SX"-X" = "---XXXX"

7D"127" = "1111111"

SynthWorks

18

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Mod for Physical Types (time)

Phase_int := (NOW/1 ns) mod (tperiod_wave/1 ns) ;

Prior to 2008, Mod for Time Required a Calculation

To big for type integer when time >= 2**31 * 1 ns

phase := NOW mod tperiod_wave ;

Simplifies periodic waveform phase calculation generation

function "mod" (anonymous : time) return time;

Implicitly defined for all physical types

2008 defined Mod for Physical Types

SynthWorks

19

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Context Declarations

Prior to 2008, all designs referenced a set of packages
library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all ;

Reference the named context unit
Library Lib_P1 ;
 context Lib_P1.rtl_ctx ;

Context rtl_ctx is
 library ieee;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all ;
end ;

VHDL-2008 adds context declarations

SynthWorks

20

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Slices in Array Aggregates

signal A, B, Y : unsigned (7 downto 0) ;
signal CarryOut : std_logic ;

. . .

(CarryOut, Y) <= ('0' & A) + ('0' & B) ;

2008 allows slices in an array aggregate

Prior to 2008, coding an adder with separate carry out:

(CarryOut,Y(7),Y(6),Y(5),Y(4),Y(3),Y(2),Y(1),Y(0))
 <= ('0' & A) + ('0' & B) ;

signal Y9 : unsigned(8 downto 0) ;
. . .
Y9 <= ('0' & A) + ('0' & B) ;
Y <= Y9(7 downto 0) ;
CarryOut <= Y9(8) ;

SynthWorks

21

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

VHDL-2008 Summary

Readability and capability have increased
Code is simpler and more concise.
Verbosity is gone.
Strong typing is still present.

For more on VHDL-2008 see:
http://www.SynthWorks.com/blog

SynthWorks

SynthWorks VHDL Training
Comprehensive VHDL Introduction 4 Days

http://www.synthworks.com/comprehensive_vhdl_introduction.htm
A design and verification engineer's introduction to VHDL syntax, RTL
coding, and testbenches. Students get VHDL hardware experience with
our FPGA based lab board.

VHDL Coding for Synthesis 4 Days
 http://www.synthworks.com/vhdl_rtl_synthesis.htm
 Learn VHDL RTL (FPGA and ASIC) coding styles, methodologies, design

techniques, problem solving techniques, and advanced language
constructs to produce better, faster, and smaller logic.

SynthWorks offers on-site, public venue, and on-line classes. See:
http://www.synthworks.com/public_vhdl_courses.htm

SynthWorks

VHDL Testbenches and Verification 5 days - OS-VVM bootcamp
 http://www.synthworks.com/vhdl_testbench_verification.htm

Learn the latest VHDL verification techniques including transaction-
based testing, bus functional modeling, self-checking, data structures
(linked-lists, scoreboards, memories), directed, algorithmic, constrained
random and coverage driven random testing, and functional coverage.

