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VHDL-2008, The End of Verbosity!

Many think of VHDL as the Verbose HDL.
With VHDL-2008 this is no longer the case.

Topics
Simplified Sensitivity List
Simplified Condition (if, while, …)
Matching Relational Operators
Simplified Case Statement
Sequential Conditional Assignment
Unary Reduction Logic Operators
Array / Bit Logic Operators
Array / Bit Addition Operators
Simplified Printing with to_string
Expressions In Port Maps
Reading Out Ports
Enhanced Bit String Literals
Mod for Physical Types (Time)
Context Declarations
Slices in Array Aggregates
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Simplified Sensitivity List - Process (all)

Prior to 2008, all inputs to a combinational logic process need
to be on the sensitivity list

Mux1_proc : process( MuxSel, A, B, C, D )
begin
. . .

Mux2_proc : process(all)
begin

VHDL-2008 allows the use of keyword "all" in place of signals

SynthWorks
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Simplified Condition (if, while, …)

if  Cs1 = '1' and nCs2 = '0' and Cs3 = '1'  then

Prior to 2008, a condition (expression in if, while, …) was
required to have a boolean result.

Our code was plagued with "="

if  Cs1 and not nCs2 and Cs3  then

VHDL-2008 allows condition to have a bit or std_logic result
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Matching Relational Operators

Prior to 2008, decoding arrays required conditionals
DevSel <= '1' when

   Addr = X"A5" and Cs1 = '1' and nCs2 = '0'

   else '0' ;

2008 adds relational operators: ?=, ?/=, ?>, ?>=, ?<, ?<=
return element values (bit, std_ulogic, …)

DevSel <= Addr ?= X"A5" and Cs1 and not nCs2 ;

Simplifies decoders

Harmonizes with Simplified Condition
if (Addr ?= X"A5" and Cs1 and not nCs2) then

SynthWorks



7

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Matching Relational Operators

DevSel <= '1' when

    Addr(7 downto 5) = "111" and

    Addr(2 downto 0) = "000"

    and Cs1 = '1' and nCs2 = '0'

    else '0' ;

Prior to 2008, there was no relational that understood '-'
As a result, '-' had to be factored out of an expression

DevSel <= Addr ?= "111--000" and Cs1 and not nCs2 ;

VHDL-2008, ?= and ?/= understand '-' as don't care
Defined for std_ulogic and 1 d arrays of std_ulogic

SynthWorks

8

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Simplified Case Statement

Y := A xor B ;
case Y is

Prior to 2008, expressions required intermediate objects

case  A xor B  is

With VHDL-2008, expressions are permitted

With VHDL-2008, locally static expressions now include
Operations on arrays (such as std_logic_vector)
Operators defined in std_logic_1164, numeric_std

constant CHOICE1 : std_logic_vector := "11" & "00" ;
. . .
case A xor B is
  when CHOICE1     =>     ...
  when "00" & "11" =>     ...

SynthWorks
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Sequential Conditional Assignment

if (FP = '1') then
    NextState  <= FLASH ;
else
    NextState  <= IDLE ;
end if ;

Prior to 2008, a conditional in a process required "if"

NextState <= FLASH when FP else IDLE ;

Conditional signal assignment in sequential code:

NextState := FLASH when FP else IDLE ;

Conditional variable assignment in sequential code:

VHDL-2008 simplifies code by allowing:
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Unary Reduction Logic Operators

Prior to 2008, Calculating Parity required:
Parity <= Data(7) xor Data(6) xor Data(5) xor Data(4) xor
          Data(3) xor Data(2) xor Data(1) xor Data(0) ;

Simplifies Parity Calculation
signal Data : std_logic_vector(7 downto 0) ;
signal Parity : std_logic ;
. . .

Parity <= xor Data ;

Defined for arrays of bit and std_ulogic
Defined for all binary logic operators:

AND, OR, XOR, NAND, NOR, XNOR

function "xor"  ( anonymous: BIT_VECTOR) return BIT;

VHDL-2008 adds Unary Reduction Operators of the form:

SynthWorks
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Array / Bit Logic Operators

A(0)

A(1)

A(3)
Sel

Y(0)

Y(1)

Y(3)

..

.

signal Sel : std_logic ;
signal Y, A, vSel : unsigned(3 downto 0);
. . .

Y <=  A when Sel = '1' else "0000" ;

Prior to 2008, and'ing a bit with an array

Y <=  A and Sel ;

Simplifies to:

function "and"( L: BIT_VECTOR; R: BIT) return BIT_VECTOR;
function "and"( L: BIT; R: BIT_VECTOR) return BIT_VECTOR;

Defined for arrays of bit and std_ulogic

VHDL-2008 adds Array / Bit Logic Operators

SynthWorks
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Array / Bit Logic Operators

VHDL-2008, simplifies data read back logic
DO <= (AReg and ASel) or (BReg and BSel) or
      (CSel and CReg) or (DSel and DReg) ;

Prior to 2008, data read back logic:
process ( A, ASel, B, BSel, C, CSel, D, DSel )
begin
  if ASel = '1' then
    DO <= A ;
  elsif BSel = '1' then
    DO <= B ;
  elsif CSel = '1' then
    DO <= C ;
  elsif DSel = '1' then
    DO <= D ;
  . . .

SynthWorks



13

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Array / Bit Addition Operators

signal CarryIn  : std_logic ;
signal A, B     : unsigned(7 downto 0) ;
signal Y        : unsigned(8 downto 0) ;
. . .

Y <= ('0' & A) + ('0' & B) + ("0" & CarryIn) ;

Prior to 2008, addition only for arrays
May result in two separate adders

Y <= ('0' & A) + ('0' & B) + CarryIn ;

Simplify coding Carry In

"+" and "-" defined for all array based math types

function "+"(L: unsigned; R: std_ulogic) return unsigned;
function "+"(L: std_ulogic; R: unsigned) return unsigned;

2008 adds Array / Bit Addition Operators

SynthWorks
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Simplified Printing with TO_String

function to_string ( VALUE : unsigned ) return string;

VHDL-2008 adds string conversions for all types

write( OUTPUT , "%%%ERROR data value miscompare." &

  LF & "  Actual value = " & to_hstring (Data) &

  LF & "  Expected value = " & to_hstring (ExpData) &

  LF & "  at time:  " & to_string (now) & LF ) ;

Simplifies usage of report statement or built-in write

Hex and Octal string conversions for bit based arrays
to_hstring, to_ostring

SynthWorks
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Expressions in Port Maps

Temp <= Y and C ;

U_CHIP : CHIP port map ( A, Temp, B) ;

Prior to 2008, expressions on inputs require separate signals:

VHDL-2008 allows expressions on inputs.
Executes same as a separate signal.

U_CHIP : CHIP port map ( A, Y and C, B) ;

SynthWorks
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Reading Out Ports

i_Y  <= A and B ;
Y    <= i_Y ;   -- out port

W    <= i_Y and C ;

Prior to 2008, reading out ports required an extra signal:

Viewed as an output after a chip IO cell
Provided minimal benefit at top level of design

VHDL-2008 allows reading of Out Ports.
Y    <= A and B ; -- out port

W    <= Y and C ;

Value read will be locally driven value

SynthWorks
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Enhanced Bit String Literals

Addr(6 downto 0)  <=  "111" & X"F" ;

Prior to 2008, hex bit string literals were a multiple of 4 bits

7X"7F"    = "1111111"

VHDL-2008, simplifies bit string literals by adding

Lengths

Unsigned notation (default)
Extend: 0 fill LHS
Reduce: ok to drop 0 on LHS

Signed notation
Extend: replicate sign bit
Reduce: ok to drop sign bit

-, X, Z handling  (*S)

Decimal values

7UX"F"   = "0001111" -- extend
7UX"0F"  = "0001111" -- reduce
7UX"8F"  = "0001111" -- error

7SX"F"   = "1111111" -- extend
7SX"CF"  = "1001111" -- reduce
7SX"8F"  = "0001111" -- error

7SX"-X"  = "---XXXX"

7D"127" =  "1111111"

SynthWorks

18

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Mod for Physical Types (time)

Phase_int := (NOW/1 ns) mod (tperiod_wave/1 ns) ;

Prior to 2008, Mod for Time Required a Calculation

To big for type integer when time >= 2**31 * 1 ns

phase     := NOW mod tperiod_wave ;

Simplifies periodic waveform phase calculation generation

function "mod" (anonymous : time) return time;

Implicitly defined for all physical types

2008 defined Mod for Physical Types

SynthWorks
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Context Declarations

Prior to 2008, all designs referenced a set of packages
library ieee;
  use ieee.std_logic_1164.all;
  use ieee.numeric_std.all ;

Reference the named context unit
Library Lib_P1 ;
  context Lib_P1.rtl_ctx ;

Context rtl_ctx is
  library ieee;
  use ieee.std_logic_1164.all;
  use ieee.numeric_std.all ;
end ;

VHDL-2008 adds context declarations
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Slices in Array Aggregates

signal A, B, Y      : unsigned (7 downto 0) ;
signal CarryOut     : std_logic ;

. . .

(CarryOut, Y)  <=  ('0' & A) + ('0' & B) ;

2008 allows slices in an array aggregate

Prior to 2008, coding an adder with separate carry out:

(CarryOut,Y(7),Y(6),Y(5),Y(4),Y(3),Y(2),Y(1),Y(0))
   <= ('0' & A) + ('0' & B) ;

signal Y9 : unsigned(8 downto 0) ;
. . .
Y9 <= ('0' & A) + ('0' & B) ;
Y <= Y9(7 downto 0) ;
CarryOut <= Y9(8) ;
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VHDL-2008 Summary

Readability and capability have increased
Code is simpler and more concise.
Verbosity is gone.
Strong typing is still present.

For more on VHDL-2008 see:
http://www.SynthWorks.com/blog
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    Learn VHDL RTL (FPGA and ASIC) coding styles, methodologies, design

techniques, problem solving techniques, and advanced language
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